http://trv-science.ru/2021/09/pervichnye-chernye-dyry/ Дальше вступают в силу ограничения из наблюдений реликтового излучения. Если изначально существовало много черных дыр с массой больше десятков солнечных, то они в период примерно с 50 до сотен тысяч лет с начала расширения Вселенной активно стягивали на себя вещество (аккреция), что привело бы к изменению температуры и степени ионизации ранней Вселенной. Это противоречило бы данным «Планка». Ограничение по F достигает уровня 10–8 при М ~3·104 Mʘ, для более тяжелых черных дыр предел не вычислен из-за сложностей в оценке темпа аккреции, зато там вступают в силу другие, более сильные ограничения. ... Первичные черные дыры меньшей массы в настоящее время достаточно интенсивно бы испарялись, и тогда они дали бы либо избыточный гамма-фон, либо слишком большое количество позитронов в космосе, что противоречило бы прямым измерениям «Вояджеров». Кроме того, аннигиляционных гамма-квантов 511 кэВ из центра Галактики было бы больше, чем наблюдается. Почему для ограничения числа позитронов используются данные именно «Вояджеров», когда есть гораздо более точные данные более близких космических аппаратов? Дело в том, что испаряющиеся черные дыры массой ~1017 г испускают частицы энергии сотни МэВ — позитроны такой энергии неспособны преодолеть солнечное магнитное поле и добраться до детекторов частиц в районе орбиты Земли. ... Другое важное замечание: масса черных дыр, образующихся в некий момент, не может превышать массу, содержащуюся в объеме горизонта Вселенной на тот же момент. Такая масса росла со временем: от планковской массы до килограмма во время инфляции, затем до массы Земли в одну наносекунду, далее до массы Солнца в десять микросекунд и т. д. (см. рис. 1). ... Если амплитуда возмущений распределена по Гауссу (что подтверждается данными «Планка» и теоретическими соображениями для моделей инфляции без «выкрутасов»), то заскок на 10 000 сигма абсолютно невозможен. Но мы имеем данные об амплитуде неоднородностей среды ранней Вселенной лишь в интервале трех порядков по их размеру. А если у более мелких неоднородностей, следы которых совершенно замыты, дисперсия плотности гораздо выше? Естественный вариант инфляции такое исключает — там все возмущения возникают как квантовый эффект, с одинаковой дисперсией. Сама инфляция делает возмущения масштабно-инвариантными, и их распределение лишь немного деформируется, когда инфляция подходит к концу. Но нельзя ли придумать такую модель, чтобы резко усилить возмущения в той области, которая не поддается наблюдениям? Над этим работает много космологов, и, конечно, им приходится применять различные ухищрения типа акустических резонансов, усиливающих возмущения определенного размера. ... Можно ли получить первичные дыры иным путем, без связи с первичными возмущениями плотности? Тут есть несколько довольно экзотических возможностей, связанных с интересными моментами в эволюции ранней Вселенной. Это прежде всего фазовые переходы, в частности переход Вайнберга — Салама (расщепление электрослабых взаимодействий на электромагнитные и слабые), а также превращение кварк-глюонной плазмы в протоны и нейтроны. ... Пожалуй, самое насущное приложение первичных черных дыр — ранние квазары (сверхмассивные черные дыры). Проблема ранних квазаров уже рассматривалась в публикации ТрВ-Наука
no subject
Date: 2022-07-04 09:47 am (UTC)Дальше вступают в силу ограничения из наблюдений реликтового излучения. Если изначально существовало много черных дыр с массой больше десятков солнечных, то они в период примерно с 50 до сотен тысяч лет с начала расширения Вселенной активно стягивали на себя вещество (аккреция), что привело бы к изменению температуры и степени ионизации ранней Вселенной. Это противоречило бы данным «Планка». Ограничение по F достигает уровня 10–8 при М ~3·104 Mʘ, для более тяжелых черных дыр предел не вычислен из-за сложностей в оценке темпа аккреции, зато там вступают в силу другие, более сильные ограничения.
...
Первичные черные дыры меньшей массы в настоящее время достаточно интенсивно бы испарялись, и тогда они дали бы либо избыточный гамма-фон, либо слишком большое количество позитронов в космосе, что противоречило бы прямым измерениям «Вояджеров». Кроме того, аннигиляционных гамма-квантов 511 кэВ из центра Галактики было бы больше, чем наблюдается.
Почему для ограничения числа позитронов используются данные именно «Вояджеров», когда есть гораздо более точные данные более близких космических аппаратов? Дело в том, что испаряющиеся черные дыры массой ~1017 г испускают частицы энергии сотни МэВ — позитроны такой энергии неспособны преодолеть солнечное магнитное поле и добраться до детекторов частиц в районе орбиты Земли.
...
Другое важное замечание: масса черных дыр, образующихся в некий момент, не может превышать массу, содержащуюся в объеме горизонта Вселенной на тот же момент. Такая масса росла со временем: от планковской массы до килограмма во время инфляции, затем до массы Земли в одну наносекунду, далее до массы Солнца в десять микросекунд и т. д. (см. рис. 1).
...
Если амплитуда возмущений распределена по Гауссу (что подтверждается данными «Планка» и теоретическими соображениями для моделей инфляции без «выкрутасов»), то заскок на 10 000 сигма абсолютно невозможен. Но мы имеем данные об амплитуде неоднородностей среды ранней Вселенной лишь в интервале трех порядков по их размеру. А если у более мелких неоднородностей, следы которых совершенно замыты, дисперсия плотности гораздо выше? Естественный вариант инфляции такое исключает — там все возмущения возникают как квантовый эффект, с одинаковой дисперсией. Сама инфляция делает возмущения масштабно-инвариантными, и их распределение лишь немного деформируется, когда инфляция подходит к концу. Но нельзя ли придумать такую модель, чтобы резко усилить возмущения в той области, которая не поддается наблюдениям? Над этим работает много космологов, и, конечно, им приходится применять различные ухищрения типа акустических резонансов, усиливающих возмущения определенного размера.
...
Можно ли получить первичные дыры иным путем, без связи с первичными возмущениями плотности? Тут есть несколько довольно экзотических возможностей, связанных с интересными моментами в эволюции ранней Вселенной. Это прежде всего фазовые переходы, в частности переход Вайнберга — Салама (расщепление электрослабых взаимодействий на электромагнитные и слабые), а также превращение кварк-глюонной плазмы в протоны и нейтроны.
...
Пожалуй, самое насущное приложение первичных черных дыр — ранние квазары (сверхмассивные черные дыры). Проблема ранних квазаров уже рассматривалась в публикации ТрВ-Наука